1,461 research outputs found

    Classical GR as a topological theory with linear constraints

    Full text link
    We investigate a formulation of continuum 4d gravity in terms of a constrained topological (BF) theory, in the spirit of the Plebanski formulation, but involving only linear constraints, of the type used recently in the spin foam approach to quantum gravity. We identify both the continuum version of the linear simplicity constraints used in the quantum discrete context and a linear version of the quadratic volume constraints that are necessary to complete the reduction from the topological theory to gravity. We illustrate and discuss also the discrete counterpart of the same continuum linear constraints. Moreover, we show under which additional conditions the discrete volume constraints follow from the simplicity constraints, thus playing the role of secondary constraints. Our analysis clarifies how the discrete constructions of spin foam models are related to a continuum theory with an action principle that is equivalent to general relativity.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010 (ERE2010, Granada, Spain

    Classical GR as a topological theory with linear constraints

    Full text link
    We investigate a formulation of continuum 4d gravity in terms of a constrained topological (BF) theory, in the spirit of the Plebanski formulation, but involving only linear constraints, of the type used recently in the spin foam approach to quantum gravity. We identify both the continuum version of the linear simplicity constraints used in the quantum discrete context and a linear version of the quadratic volume constraints that are necessary to complete the reduction from the topological theory to gravity. We illustrate and discuss also the discrete counterpart of the same continuum linear constraints. Moreover, we show under which additional conditions the discrete volume constraints follow from the simplicity constraints, thus playing the role of secondary constraints. Our analysis clarifies how the discrete constructions of spin foam models are related to a continuum theory with an action principle that is equivalent to general relativity.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010 (ERE2010, Granada, Spain

    Classical GR as a topological theory with linear constraints

    Full text link
    We investigate a formulation of continuum 4d gravity in terms of a constrained topological (BF) theory, in the spirit of the Plebanski formulation, but involving only linear constraints, of the type used recently in the spin foam approach to quantum gravity. We identify both the continuum version of the linear simplicity constraints used in the quantum discrete context and a linear version of the quadratic volume constraints that are necessary to complete the reduction from the topological theory to gravity. We illustrate and discuss also the discrete counterpart of the same continuum linear constraints. Moreover, we show under which additional conditions the discrete volume constraints follow from the simplicity constraints, thus playing the role of secondary constraints. Our analysis clarifies how the discrete constructions of spin foam models are related to a continuum theory with an action principle that is equivalent to general relativity.Comment: 4 pages, based on a talk given at the Spanish Relativity Meeting 2010 (ERE2010, Granada, Spain

    Shocks and a Giant Planet in the Disk Orbiting BP Piscium?

    Full text link
    Spitzer IRS spectroscopy supports the interpretation that BP Piscium, a gas and dust enshrouded star residing at high Galactic latitude, is a first-ascent giant rather than a classical T Tauri star. Our analysis suggests that BP Piscium's spectral energy distribution can be modeled as a disk with a gap that is opened by a giant planet. Modeling the rich mid-infrared emission line spectrum indicates that the solid-state emitting grains orbiting BP Piscium are primarily composed of ~75 K crystalline, magnesium-rich olivine; ~75 K crystalline, magnesium-rich pyroxene; ~200 K amorphous, magnesium-rich pyroxene; and ~200 K annealed silica ('cristobalite'). These dust grains are all sub-micron sized. The giant planet and gap model also naturally explains the location and mineralogy of the small dust grains in the disk. Disk shocks that result from disk-planet interaction generate the highly crystalline dust which is subsequently blown out of the disk mid-plane and into the disk atmosphere.Comment: 25 pages, 4 figures, 1 table. Accepted to Ap

    Dust-grain processing in circumbinary discs around evolved binaries. The RV Tauri spectral twins RU Cen and AC Her

    Get PDF
    Context: We study the structure and evolution of circumstellar discs around evolved binaries and their impact on the evolution of the central system. Aims: To study in detail the binary nature of RUCen and ACHer, as well as the structure and mineralogy of the circumstellar environment. Methods: We combine multi-wavelength observations with a 2D radiative transfer study. Our radial velocity program studies the central stars, while our Spitzer spectra and broad-band SEDs are used to constrain mineralogy, grain sizes and physical structure of the circumstellar environment. Results: We determine the orbital elements of RUCen showing that the orbit is highly eccentric with a rather long period of 1500 days. The infrared spectra of both objects are very similar and the spectral dust features are dominated by Mg-rich crystalline silicates. The small peak-to-continuum ratios are interpreted as being due to large grains. Our model contains two components with a cold midplain dominated by large grains, and the near- and mid-IR which is dominated by the emission of smaller silicates. The infrared excess is well modelled assuming a hydrostatic passive irradiated disc. The profile-fitting of the dust resonances shows that the grains must be very irregular. Conclusions: These two prototypical RVTauri pulsators with circumstellar dust are binaries where the dust is trapped in a stable disc. The mineralogy and grain sizes show that the dust is highly processed, both in crystallinity and grain size. The cool crystals show that either radial mixing is very efficient and/or that the thermal history at grain formation has been very different from that in outflows. The physical processes governing the structure of these discs are similar to those observed in protoplanetary discs around young stellar objects.Comment: 11 pages, 12 figures, accepted for publication by A&

    Solidification of liquid metal drops during impact

    Get PDF
    Hot liquid metal drops impacting onto a cold substrate solidify during their subsequent spreading. Here we experimentally study the influence of solidification on the outcome of an impact event. Liquid tin drops are impacted onto sapphire substrates of varying temperature. The impact is visualised both from the side and from below, which provides a unique view on the solidification process. During spreading an intriguing pattern of radial ligaments rapidly solidifies from the centre of the drop. This pattern determines the late-time morphology of the splat. A quantitative analysis of the drop spreading and ligament formation is supported by scaling arguments. Finally, a phase diagram for drop bouncing, deposition and splashing as a function of substrate temperature and impact velocity is provided

    IRAS\,11472-0800: an extremely depleted pulsating binary post-AGB star

    Full text link
    We focus here on one particular and poorly studied object, IRAS11472-0800. It is a highly evolved post-Asymptotic Giant Branch (post-AGB) star of spectral type F, with a large infrared excess produced by thermal emission of circumstellar dust. We deploy a multi-wavelength study which includes the analyses of optical and IR spectra as well as a variability study based on photometric and spectroscopic time-series. The spectral energy distribution (SED) properties as well as the highly processed silicate N-band emission show that the dust in IRAS11472-0800 is likely trapped in a stable disc. The energetics of the SED and the colour variability show that our viewing angle is close to edge-on and that the optical flux is dominated by scattered light. With photospheric abundances of [Fe/H] = -2.7 and [Sc/H]=-4.2, we discovered that IRAS11472-0800 is one of the most chemically-depleted objects known to date. Moreover, IRAS11472-0800 is a pulsating star with a period of 31.16 days and a peak-to-peak amplitude of 0.6 mag in V. The radial velocity variability is strongly influenced by the pulsations, but the significant cycle-to-cycle variability is systematic on a longer time scale, which we interpret as evidence for binary motion. We conclude that IRAS11472-0800 is a pulsating binary star surrounded by a circumbinary disc. The line-of-sight towards the object lies close the the orbital plane making that the optical light is dominated by scattered light. IRAS11472-0800 is one of the most chemically-depleted objects known so far and links the dusty RV\,Tauri stars to the non-pulsating class of strongly depleted objects.Comment: 12 pages, 14 figures Accepted for publication in A&A Main Journa

    Needle age-related and seasonal photosynthetic capacity variation is negligible for modelling yearly gas exchange of a sparse temperate Scots pine forest

    Get PDF
    In this study, we quantified the predictive accuracy loss involved with omitting photosynthetic capacity variation for a Scots pine (<i>Pinus sylvestris</i> L.) stand in Flanders, Belgium. Over the course of one phenological year, we measured the maximum carboxylation capacity at 25 &deg;C (<i>V</i><sub>m25</sub>), the maximum electron transport capacity at 25 &deg;C (<i>J</i><sub>m25</sub>), and the leaf area index (LAI) of different-aged needle cohorts in the upper and lower canopy. We used these measurements as input for a process-based multi-layer canopy model with the objective to quantify the difference in yearly gross ecosystem productivity (GEP) and canopy transpiration (<i>E</i><sub>can</sub>) simulated under scenarios in which the observed needle age-related and/or seasonal variation of <i>V</i><sub>m25</sub> and <i>J</i><sub>m25</sub> was omitted. We compared simulated GEP with estimations obtained from eddy covariance measurements. Additionally, we measured summer needle N content to investigate the relationship between photosynthetic capacity parameters and needle N content along different needle ages. <br><br> Results show that <i>V</i><sub>m25</sub> and <i>J</i><sub>m25</sub> were, respectively, 27% and 13% higher in current-year than in one-year old needles. A significant seasonality effect was found on <i>V</i><sub>m25</sub>, but not on <i>J</i><sub>m25</sub>. Summer needle N content was considerably lower in current-year than in one-year-old needles. As a result, the correlations between <i>V</i><sub>m25</sub> and needle N content and <i>J</i><sub>m25</sub> and needle N content were negative and non-significant, respectively. Some explanations for these unexpected correlations were brought forward. Yearly GEP was overestimated by the canopy model by &plusmn;15% under all scenarios. The inclusion and omission of the observed needle age-related <i>V</i><sub>m25</sub> and <i>J</i><sub>m25</sub> variation in the model simulations led to statistically significant but ecologically irrelevant differences in simulated yearly GEP and <i>E</i><sub>can</sub>. Omitting seasonal variation did not yield significant simulation differences. Our results indicate that intensive photosynthetic capacity measurements over the full growing season and separate simulation of needle age classes were no prerequisites for accurate simulations of yearly canopy gas exchange. This is true, at least, for the studied stand, which has a very sparse canopy and is exposed to high N deposition and, hence, is not fully representative for temperate Scots pine stands. Nevertheless, we believe well-parameterized process-based canopy models – as applied in this study – are a useful tool to quantify losses of predictive accuracy involved with canopy simplification in modelling

    On the metallicity dependence of crystalline silicates in oxygen-rich asymptotic giant branch stars and red supergiants

    Full text link
    We investigate the occurrence of crystalline silicates in oxygen-rich evolved stars across a range of metallicities and mass-loss rates. It has been suggested that the crystalline silicate feature strength increases with increasing mass-loss rate, implying a correlation between lattice structure and wind density. To test this, we analyse Spitzer IRS and Infrared Space Observatory SWS spectra of 217 oxygen-rich asymptotic giant branch stars and 98 red supergiants in the Milky Way, the Large and Small Magellanic Clouds and Galactic globular clusters. These encompass a range of spectral morphologies from the spectrally-rich which exhibit a wealth of crystalline and amorphous silicate features to 'naked' (dust-free) stars. We combine spectroscopic and photometric observations with the GRAMS grid of radiative transfer models to derive (dust) mass-loss rates and temperature. We then measure the strength of the crystalline silicate bands at 23, 28 and 33 microns. We detect crystalline silicates in stars with dust mass-loss rates which span over 3 dex, down to rates of ~10^-9 solar masses/year. Detections of crystalline silicates are more prevalent in higher mass-loss rate objects, though the highest mass-loss rate objects do not show the 23-micron feature, possibly due to the low temperature of the forsterite grains or it may indicate that the 23-micron band is going into absorption due to high column density. Furthermore, we detect a change in the crystalline silicate mineralogy with metallicity, with enstatite seen increasingly at low metallicity.Comment: Accepted for publication in MNRAS, 24 pages, 16 figure

    Properties of Interfaces in the two and three dimensional Ising Model

    Full text link
    To investigate order-order interfaces, we perform multimagnetical Monte Carlo simulations of the 2D2D and 3D3D Ising model. Following Binder we extract the interfacial free energy from the infinite volume limit of the magnetic probability density. Stringent tests of the numerical methods are performed by reproducing with high precision exact 2D2D results. In the physically more interesting 3D3D case we estimate the amplitude F0sF^s_0 of the critical interfacial tension Fs=F0stμF^s = F^s_0 t^\mu to be F0s=1.52±0.05F^s_0 = 1.52 \pm 0.05. This result is in good agreement with a previous MC calculation by Mon, as well as with experimental results for related amplitude ratios. In addition, we study in some details the shape of the magnetic probability density for temperatures below the Curie point.Comment: 25 pages; sorry no figures include
    • …
    corecore